iCurbe News
  • Home
  • AI News
    adopción dispareja de la IA a nivel geográfico y empresarial

    Adopción desigual de IA a nivel geográfico y empresarial en LATAM

    Amazon Olympus IA

    Amazon Olympus IA

    ¿Qué son los agentes de IA?

    ¿Qué son los agentes de IA?

    ChatGPT no te dice la verdad ni está entrenado para ello

    ChatGPT no te dice la verdad ni está entrenado para ello

    Gemelos digitales impulsados por IA: explorando el futuro de las relaciones humanas.

    Gemelos digitales impulsados por IA: explorando el futuro de las relaciones humanas.

    El Futuro ya está aquí (video)

    El Futuro ya está aquí (video)

    Llama 3.2: Impulsando la Innovación en IA con Modelos Abiertos y Personalizables

    Llama 3.2: Impulsando la Innovación en IA con Modelos Abiertos y Personalizables

    LOTUS: Un Framework Innovador para Consultas Semánticas en Bases de Datos

    LOTUS: Un Framework Innovador para Consultas Semánticas en Bases de Datos

  • Proyectos IA
  • Libros
  • Sobre mi
No Result
View All Result
iCurbe News
  • Home
  • AI News
    adopción dispareja de la IA a nivel geográfico y empresarial

    Adopción desigual de IA a nivel geográfico y empresarial en LATAM

    Amazon Olympus IA

    Amazon Olympus IA

    ¿Qué son los agentes de IA?

    ¿Qué son los agentes de IA?

    ChatGPT no te dice la verdad ni está entrenado para ello

    ChatGPT no te dice la verdad ni está entrenado para ello

    Gemelos digitales impulsados por IA: explorando el futuro de las relaciones humanas.

    Gemelos digitales impulsados por IA: explorando el futuro de las relaciones humanas.

    El Futuro ya está aquí (video)

    El Futuro ya está aquí (video)

    Llama 3.2: Impulsando la Innovación en IA con Modelos Abiertos y Personalizables

    Llama 3.2: Impulsando la Innovación en IA con Modelos Abiertos y Personalizables

    LOTUS: Un Framework Innovador para Consultas Semánticas en Bases de Datos

    LOTUS: Un Framework Innovador para Consultas Semánticas en Bases de Datos

  • Proyectos IA
  • Libros
  • Sobre mi
No Result
View All Result
iCurbe News
No Result
View All Result

LOTUS: Un Framework Innovador para Consultas Semánticas en Bases de Datos

Hector Curbelo Barrios by Hector Curbelo Barrios
septiembre 25, 2024
in AI, Ciencias de Datos, Tecnología Avanzada
0
LOTUS: Un Framework Innovador para Consultas Semánticas en Bases de Datos
Share on FacebookShare on Twitter
1 0
Read Time:4 Minute, 54 Second

LOTUS (Language Of Things for Unstructured and Structured data) es un framework revolucionario que está transformando la manera en que interactuamos con los datos. Este sistema innovador permite realizar consultas semánticas sobre tablas que contienen tanto datos estructurados como no estructurados, integrando directamente los Modelos de Lenguaje Grande (LLMs) en el pipeline de procesamiento de consultas de bases de datos.

La potencia de LOTUS radica en su capacidad para combinar lo mejor de dos mundos:

  1. La gestión de datos de alto rendimiento característica de las bases de datos tradicionales.
  2. El razonamiento avanzado y la comprensión del lenguaje natural propios de los modelos de IA más avanzados.
https://arxiv.org/abs/2408.14717

Esta combinación permite a los usuarios interactuar con sus datos de una manera más intuitiva y natural, al tiempo que mantiene la eficiencia y el rendimiento necesarios para el manejo de grandes volúmenes de información.

Consultas Semánticas

LOTUS permite a los usuarios realizar consultas semánticas, lo que significa que pueden interactuar con los datos utilizando lenguaje natural y conceptos de alto nivel. Esto contrasta con las consultas estructuradas tradicionales, que requieren un conocimiento preciso de la estructura de la base de datos y del lenguaje de consulta.

Integración de LLMs en Bases de Datos

Una característica distintiva de LOTUS es su capacidad para incorporar LLMs directamente en el proceso de consulta de la base de datos. Esto permite un procesamiento más inteligente y contextual de los datos, habilitando análisis más sofisticados y una mejor comprensión de la información almacenada.

Operadores Semánticos

LOTUS utiliza un conjunto de operadores semánticos para transformar dataframes de Pandas. Estos operadores son similares en concepto a los operadores relacionales en SQL, pero están diseñados específicamente para tareas de procesamiento de lenguaje natural:

  • Sem_Map: Aplica una transformación a cada fila del dataframe.
  • Sem_Filter: Filtra las filas que cumplen con un predicado semántico.
  • Sem_Agg: Agrega información a través de todas las filas.
  • Sem_TopK: Ordena el dataframe según ciertos criterios.
  • Sem_Join: Une dos dataframes basándose en un predicado semántico.
  • Sem_Index: Crea un índice semántico sobre una columna.
  • Sem_Search: Busca filas relevantes en el dataframe.

Configuración Inicial

Para comenzar a utilizar LOTUS, primero necesitamos configurar los modelos que utilizaremos. En este ejemplo, usaremos GPT-3.5-Turbo como modelo de lenguaje y E5 como modelo de incrustación:

import pandas as pd
import lotus
from lotus.models import E5Model, OpenAIModel

# Configurar modelos para LOTUS
lm = OpenAIModel(max_tokens=512)
rm = E5Model()
lotus.settings.configure(lm=lm, rm=rm)

Ejemplo Práctico: Análisis de Cursos

Vamos a crear un dataframe con información sobre cursos y sus descripciones:

data = [
    ("Probabilidad y Procesos Aleatorios", "Se enfoca en cadenas de Markov y convergencia de procesos aleatorios. La carga de trabajo es bastante alta."),
    ("Aprendizaje Profundo", "Se centra en la teoría e implementación de redes neuronales. La carga de trabajo varía según el profesor, pero generalmente no es terrible."),
    ("Diseño Digital y Circuitos Integrados", "Se enfoca en la construcción de CPUs RISC-V en Verilog. Los estudiantes han dicho que la carga de trabajo es MUY alta."),
    ("Bases de Datos", "Se centra en la implementación de un SGBDR con temas de NoSQL al final. La mayoría de los estudiantes dicen que la carga de trabajo no es demasiado alta."),
]
df = pd.DataFrame(data, columns=["Nombre del Curso", "Descripción"])

Filtrado Semántico y Agregación

Podemos usar LOTUS para filtrar cursos relacionados con el aprendizaje automático y luego generar un plan de estudio:

ml_df = df.sem_filter("{Descripción} indica que la clase es relevante para el aprendizaje automático.")
tips = ml_df.sem_agg(
    "Dado cada {Nombre del Curso} y su {Descripción}, dame un plan de estudio para tener éxito en mis clases."
)._output[0]

Top K Semántico

Para encontrar los cursos con mayor carga de trabajo:

top_2_hardest = df.sem_topk("¿Qué {Descripción} indica la carga de trabajo más alta?", 2)

Unión Semántica

Podemos usar la unión semántica para encontrar cursos que nos ayuden a mejorar habilidades específicas:

skills_df = pd.DataFrame([("SQL"), ("Diseño de Chips")], columns=["Habilidad"])
classes_for_skills = skills_df.sem_join(
    df, "Tomar {Nombre del Curso} me hará mejor en {Habilidad}"
)

Indexación y Búsqueda Semántica

LOTUS permite crear índices semánticos y realizar búsquedas eficientes:

df = df.sem_index("Descripción", "directorio_indice")
top_conv_df = df.sem_search("Descripción", "Redes Neuronales Convolucionales", 1)

Mapeo Semántico

Podemos usar el operador de mapeo semántico para generar temas de estudio adicionales para cada curso:

examples_df = pd.DataFrame(
    [("Gráficos por Computadora", "Visión por Computadora"), ("Análisis Real", "Análisis Complejo")],
    columns=["Nombre del Curso", "Respuesta"]
)
next_topics = df.sem_map(
    "Dado {Nombre del Curso}, lista un tema que sería bueno explorar a continuación. \
    Responde solo con el nombre del tema y nada más.",
    examples=examples_df,
    suffix="Próximos Temas"
)

    LOTUS representa un avance significativo en la integración de inteligencia artificial y gestión de bases de datos. Al permitir consultas semánticas sobre datos estructurados y no estructurados, y al integrar LLMs directamente en el proceso de consulta, LOTUS abre nuevas posibilidades para el análisis de datos y la toma de decisiones basada en información.

    Enlace a la pagina de la documentación de LOTUS: https://lotus-ai.readthedocs.io/en/latest/

    Tengo que decir que he hecho una prueba de LOTUS, he implementado un pequeño código de ejemplo en mi computador y me ha funcionado muy bien, los operadores semánticos van muy bien, en resumen lo que hice fue hacer una consulta a una tabla de una base de datos localmente y esos datos pasarlos a LOTUS luego puede hacer estas consultas semánticas y todo fue muy bien, en definitiva parece una buena idea de sus creadores y hay que seguir pues aun esta muy verde.

    Esto ha sido todo por ahora, espero que este artículo te sea de utilidad, si llegaste hasta aquí, déjame un comentario. Nos vemos en otra entrega de «Inteligencia Artificial Para Todos»

    Share

    Facebook
    Twitter
    Pinterest
    LinkedIn

    About Post Author

    Hector Curbelo Barrios

    hcurbelo@gmail.com
    https://www.icurbe.com
    Happy
    Happy
    0 0 %
    Sad
    Sad
    0 0 %
    Excited
    Excited
    0 0 %
    Sleepy
    Sleepy
    0 0 %
    Angry
    Angry
    0 0 %
    Surprise
    Surprise
    0 0 %
    Post Views: 2.258

    Comparte esto:

    • Haz clic para compartir en Facebook (Se abre en una ventana nueva) Facebook
    • Haz clic para compartir en X (Se abre en una ventana nueva) X

    Me gusta esto:

    Me gusta Cargando...

    Relacionado

    Tags: IcurbeInteligencia artificialtecnología avanzada

    Related Posts

    adopción dispareja de la IA a nivel geográfico y empresarial
    AI

    Adopción desigual de IA a nivel geográfico y empresarial en LATAM

    En un reciente artículo de Anthropic, una de las empresas más influyentes en el mundo de la Inteligencia Artificial,...

    by Hector Curbelo Barrios
    septiembre 19, 2025
    Las reacciones inesperadas al nuevo GPT‑5 que nadie anticipó
    Empresas

    Las reacciones inesperadas al nuevo GPT‑5 que nadie anticipó

    Cuando GPT‑4o estaba activo, muchos usuarios lo describían como un “amigo” que escuchaba y respondía con humor y empatía....

    by Hector Curbelo Barrios
    agosto 12, 2025
    Grok 4 ya está Aquí: Avances y Controversias en la IA de Musk
    Inteligencia Artificial

    Grok 4 ya está Aquí: Avances y Controversias en la IA de Musk

    En el mundo de la inteligencia artificial, los avances nunca cesan, y Elon Musk, el visionario empresario detrás de...

    by Editor iCurbe News
    julio 10, 2025
    Tencent Lanza Hunyuan-A13B: Un Nuevo Modelo de IA de Código Abierto
    Empresas

    Tencent Lanza Hunyuan-A13B: Un Nuevo Modelo de IA de Código Abierto

    En el dinámico mundo de la inteligencia artificial, Tencent, una de las empresas tecnológicas más influyentes de China, ha...

    by Editor iCurbe News
    junio 30, 2025

    Populares

    • Los 5 mejores modelos de texto a voz (TTS) de código abierto

      Los 5 mejores modelos de texto a voz (TTS) de código abierto

      0 shares
      Share 0 Tweet 0
    • One-Shot y Few-Shot Prompting: Potenciando el Uso de LLMs con Ejemplos Mínimos

      0 shares
      Share 0 Tweet 0
    • Los 5 mejores generadores de video AI gratuitos sin marca de agua

      0 shares
      Share 0 Tweet 0
    • Las 5 Técnicas de Ingeniería de Prompts que deberías conocer

      0 shares
      Share 0 Tweet 0
    • Tencent Lanza Hunyuan-A13B: Un Nuevo Modelo de IA de Código Abierto

      0 shares
      Share 0 Tweet 0
    iCurbe

    © 2025 - Noticias de Inteligencia Artificial.

    Navegación

    • Home
    • AI News
    • Proyectos IA
    • Libros
    • Sobre mi

    Síguenos

    No Result
    View All Result
    • Buy JNews
    • Homepage
      • Home – Layout 1
      • Home – Layout 2
      • Home – Layout 3

    © 2025 - Noticias de Inteligencia Artificial.

    %d